Merapatkan Jurang Pemahaman Konsep Tenaga antara Ahli Fizik dan Pelajar Fizik Sekolah Menengah

  • Azlinah Ispal SMK Bugaya II, WDT 69, 91309 Semporna, Sabah, Malaysia.
  • Mohd. Zaki Ishak Fakulti Psikologi dan Pendidikan, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
Keywords: Energy concepts, Model of Educational, Reconstruction, Physics language, Learning pathways

Abstract

Menurut sejarah, istilah tenaga sudah lama diguna pakai dalam perbualan harian untuk menjelaskan aktiviti yang berkaitan dengan kemampuan melakukan kerja, tetapi istilah ini tidak semestinya boleh digunakan dalam semua bidang. Kajian lepas menunjukkan terdapat pelbagai konsep pengetahuan alternatif terpahat dalam minda pelajar yang mungkin sama atau bertentangan dengan pemahaman saintifik ahli fizik. Oleh itu, penyelidikan yang berteraskan tradisi pendidikan Jerman-Didaktik telah dijalankan. Menurut tradisi ini guru mesti “mengelementarisasikan” isi kandungan pengetahuan fizik dan menyepadukannya dengan konsep pengetahuan alternatif pelajar untuk melaksanakan PDPC yang berkesan. Penyelidikan ini dijalankan untuk memahami bagaimana jurang pemahaman konsep tenaga antara ahli fizik dan pelajar fizik sekolah menengah boleh dirapatkan dengan menggunakan Model Pembinaan Semula PdPC (MPSP). Oleh itu, penyelidik telah meneliti 15 penerbitan utama untuk menentukan pemahaman saintifik ahli fizik tentang tenaga, menjalankan temu bual separa berstruktur melibatkan 12 orang pelajar fizik sekolah menengah untuk mencari konsep pengetahuan alternatif tenaga mereka dan menganalisis semula 23 kajian terdahulu yang berkaitan dengan isu yang sama. Kaedah analisis kualitatif kandungan dan analisis metafora digunakan untuk membantu penyelidik merungkai makna yang tersurat dan tersirat di sebalik bahasa fizik mahupun bahasa perbualan harian yang mengandungi konsep tenaga, dan bagaimana bahasa-bahasa ini saling berinteraksi. Dapatan kajian diwakili oleh laluan pembelajaran yang menghubungkan konsep fizik berorientasikan aktiviti harian dan fizik. Laluan pembelajaran ini memaparkan jurang pemahaman antara ahli fizik dan pelajar fizik sekolah menengah dan bagaimana mereka berkait antara satu sama lain. 

Downloads

Download data is not yet available.

References

Abd-El-Khalick, F., Bell, R. & Lederman, N. G. (1998). The nature of science and instructional practices: Making the unnatural natural. Science Education, 82, 417-436.

Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. New York: Holt, Rinehart and Winston.

Bécu-Robinault, K. & Tiberghien, A. (1998). Integrating experiments into the teaching of energy. International Journal Science Education, 20(1), 99-114.

Carey, S. (1999). Sources of conceptual change. In E. K. Scholnick, K. Nelson & P. Miller (eds.), Conceptual Development: Piaget’s Legacy, 293-326. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Chabalengula, V. M., Sanders, M. & Mumba, F. (2012). Diagnosing students’ understanding of energy and its related concepts in biological context. International Journal of Science and Mathematics Education, 10, 241-266.

Chai, T. Y., Wan, F., Shima, B., Ismayatim, Seng, Y. K., Ragavan, R. & Roslina, A. (2006). Form Four Physics Text Book. Curriculum Development Centre, Ministry of Education Malaysia.

Chi, M. T. (2009). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. International Handbook of Research on Conceptual Change, 89-110. Routledge.

Dawson-Tunik, T. L. & Stein, Z. (2004). It Has Bounciness Inside! Developing Conceptions of Energy dari laman https://dts.lectica.org/PDF/Bounciness.pdf.

Driver, R. & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5(1), 61-84.

Driver, R. & Erickson, G. (1983). Theories-in-actions: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37-60.

Driver, R. & Millar, R. (1986). Energy matters: Proceedings of an invited conference: Teaching about energy within the secondary science curriculum (eds.). Leeds (England): University of Leeds, Centre for Studies in Science in Science and Mathematics Education.

Driver, R., Asoko, H., Leach, J., Scott, P. & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.

Duit, R. & Häußler, P. (1994). Learning and teaching energy. In P. Fensham, R. Gunstone & R. White (eds.). The Content of Science, 185-200. London: The Falmer Press.

Duit, R. & Treagust, D. (1998). Learning science: From behaviourism towards social constructivism and beyond. In: B. J. Fraser & K. J. Tobin (eds.), International Handbook of Science Education, 3-25.

Duit, R. & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.

Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M. & Parchmann, I. (2012). The model of educational reconstruction–A framework for improving teaching and learning science. In Science Education Research and Practice in Europe, 13-37. Brill Sense.

Duit, R., Treagust, D. F. & Widodo. (2013). Teaching science for conceptual change: theory and practice. In S. Vosniadou (eds.). International Handbook of Research on Conceptual Change, 487-503. New York: Routledge.

Eger, M. (1992). Hermeneutics and science education: An introduction. Science and Education, 1(4), 337-348.

Eisenkraft, A., Nordine J., Chen, R. F., Fortus, D., Krajcik, J., Neumann K. & Scheff, A. (2014). Introduction: Why focus on energy instruction? In Chen, R. F., Eisenkraft, A., Fortus, D., Krajcik, J. S., Neumann, K., Nordine, J. & Scheff, A. (eds.). Teaching and Learning of Energy in K-12 Education, 1-11.

Fensham, P. J. (2001). Science content as problematic—issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross & P. Reiska, Eds., Research in Science Education—Past, Present, and Future, 27-41. Dordrecht, The Netherlands: Kluwer Academic Publisher.

Fensham, P. J. (2004). Defining an Identity: The Evolution of Science Education as A Field of Research, 20. Springer Science and Business Media.

Feynman, R. P., Leighton, R. B. & Sands, M. (2011). The Feynman Lectures On Physics. The new millennium edition: mainly mechanics, radiation, and heat. Basic Books.

Gilbert, J. K., Osborne, R. J. & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.

Goldring, H. & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29(1), 26. Institute of Physics (IOP) Publishing Ltd.

Gropengießer, H. (2007). Didaktische Rekonstruktion des Sehens: Wissenschaftliche Theorien und die Sicht der Schüler in der Perspektive der Vermittlung [Educational reconstruction of seeing: Scientific theories and the students’ view from the perspective of mediation.] (Reprint of the 2nd ed.). Oldenburg: Didaktisches Zentrum.

Grusche, S. (2017). Students’ ideas about prismatic images: teaching experiments for an image-based approach. International Journal of Science Education, 39(8), 981-1007.

Gyberg, P. & Lee, F. (2010). The construction of facts: Preconditions for meaning and teaching energy in Swedish classrooms. International Journal of Science Education, 32(9), 1173-1189.

Harrison, A. G. & Treagust, D. F. (2006). Teaching and learning with analogies. In Aubusson, P. J., Harrison, A. G. & Ritchie, S. M. (eds.), Metaphor and Analogy in Science Education, 11–24. Netherlands: Springer.

Herrmann-Abell, C. F. & DeBoer G. E. (2011). Investigating Students’ Understanding of Energy Transformation, Energy Transfer, And Conservation of Energy Using Standard-Based Assessment Items. Paper presented at the 2011 NARST Annual Conference, Orlando, FL.

Kattmann, U., Duit, R., Gropengießer, H. & Komorek, M. (1996). Educational Reconstruction—Bringing together issues of scientific clarification and students’ conceptions. Paper presented at the Annual Meeting of the National Association of Research in Science Teaching (NARST), St. Louis.

Klette, K. (2007). Trends in research on teaching and learning in schools: Didactics meets classroom studies. European Educational Research Journal, 6(2), 147-160.

Krummel, R., Sunal, D. W. & Sunal, C. S. (2007). Helping students reconstruct conceptions of thermodynamics: energy and heat. Science Activities, 44(3), 106-112.

Lee, H. S. & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Wiley Periodicals, Inc. Science Education, 94, 665-688.

Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Ablex Publishing Corporation, 355 Chestnut Street, Norwood, NJ 07648.

Lijnse, P. L. (1990). Energy between the life-world of pupils and the world of physics. Journal of Science Education, 74(1), 571–583.

Lindeman, M. & Saher, M. (2007). Vitalism, purpose and superposition. British Journal of Psychology, 98, 33-44.

Liu, X. & McKeough, A. (2005). Developmental Growth in Students’ Concept of Energy: Analysis of Selected Items from the TIMSS Database. Journal of Research in Science Teaching, 42(5), 493-517.

Liu, X., Ebenezer, J. & Fraser, D. M. (2002). Structural characteristics of university engineering students’ conception of energy. Journal of Research in Science Teaching, 39(5), 423-441.

Loverude, E. M., Kautz, H. C. & Heron, P. R. L. (2002). Students understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70(2), 137-148.

Méheut, M. & Psillos, D. (2004). Teaching–learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515-535.

Mikelskis-Seifert, S., Ringelband, U. & Brückmann, M. (2008). Four Decades of Research in Science Education: From Curriculum Development to Quality Improvement, 221-238. Münster, Germany: Waxmann.

Millar, R. (2014). Teaching about energy: From every day to scientific understandings. School Science Review, 96(354), 45-50.

Milner-Bolotin, M., Milner, V., Tasnádi, A. M., Weck, H. T., Groma, I. & Ispánovity, P. D. (2021, May). Contemporary Experiments and New Devices in Physics Classrooms. Journal of Physics: Conference Series 1929(1), 012067. Institute of Physics (IOP) Publishing.

Neumann, K., Viering, T., Boone, W. J. & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162-188.

Nordine, J., Krajcik, J. & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670-690.

Osborne, R. J. & Bell, B. (1983). Science teaching and children’s view on the world. European Journal of Science Education, 5(1), 1-14.

Osborne, R. J. & Gilbert, J. (1980). A technique for exploring students’ views of the world. Physics Education, 15, 376-379.

Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C. & LeMaster, R. (2006). PhET: Interactive simulations for teaching and learning physics. The Physics Teacher, 44(1), 18-23.

Pfundt, H. & Duit, R. (1994). Students' Alternative Frameworks and Science Education. Bibliography. Kiel: Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik, IPN.

Posner, G. J., Strike, K. A., Hewson, P. W. & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.

Rizaki, A. & Kokkatos, P. (2013). The use of history and philosophy of science as a core for socioconstructivist teaching approach of the concept of energy in primary education. Science and Education, 22(5), 1141-1165.

Sağlam-Arslan, A. (2010). Cross-grade comparison of students’ understanding of energy concepts. Journal of Science Education and Technology, 19, 303-313.

Schmitt, R. (2005). Systematic metaphor analysis as a method of qualitative research. The Qualitative Report, 10(2), 358-394.

Smith, J. P., diSessa, A. & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Science, 3(2), 115-163.

Steffe, L. & D’Ambrosio, B. (1996). Using teaching experiment to understand students’ mathematics. In Treagust, D., Duit, R. & Frase, B. (eds.), Improving Teaching and Learning in Science and Mathematics, 65-76. New York: teacher College Press.

Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Handbook of Research Design in Mathematics and Science Education, 267-306.

Strike, K. A. & Posner, G. J. (1992). A revisionist theory of conceptual change. Philosophy of Science, Cognitive Psychology and Educational Theory and Practice, 176.

Svedholm, A. M. & Lindeman, M. (2012). The separate roles of the reflective mind and involuntary inhibitory control in gatekeeping paranormal beliefs and the underlying intuitive confusions. British Journal of Psychology, 104(3), 303-319.

Svedholm, A. M., Lindeman, M. & Lipsanen, J. (2010). Believing in the purpose of events: Why does it occur, and is it supernatural? Applied Cognitive Psychology, 24, 252-265.

Trumper, R. (1990). Energy and a constructivist way of teaching. Physics Education, 25(4), 208-212.

Vosniadou, S. (2009). International Handbook of Research On Conceptual Change (eds.). Routledge.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Process. Harvard University Press.

Watts, D. M. (1983). Some alternatives views of energy. Physics Education, 18(5), 213-217.

Wieman, C. E., Adams, W. K., Loeblein, P. & Perkins, K. K. (2010). Teaching physics using PhET simulations. The Physics Teacher, 48(4), 225-227.

Published
2022-09-30
How to Cite
Ispal, A. and Ishak, M. Z. (2022) “Merapatkan Jurang Pemahaman Konsep Tenaga antara Ahli Fizik dan Pelajar Fizik Sekolah Menengah”, Malaysian Journal of Social Sciences and Humanities (MJSSH), 7(9), p. e001750. doi: 10.47405/mjssh.v7i9.1750.
Section
Articles